Redundant LNA systems minimize system downtime due to LNA failure by providing a spare LNA and an automatic means of switching to the spare upon failure of a primary LNA.

A 1:1 system provides one spare LNA for one primary LNA. A 1:2 system provides a spare LNA for either of two primary LNAs. The systems consist of an outdoor plate assembly which mounts at the antenna hub, an indoor control panel and interconnecting control cable.

System Block Diagram

Typical C-Band 1:2 LNA Plate Assembly
PLATE ASSEMBLY FEATURES:

- LC-4000 Series C-Band Low Noise Amplifiers (LNAs)
- High quality dual waveguide/coaxial switches
- Manual override
- Waveguide input flanges
- Output coaxial isolators standard
- Transmit reject filter(s), input crossguide coupler(s), output coax coupler(s) and offline I/O options available
REDUNDANCY CONTROLLER FEATURES:
- 10/100 Base T Ethernet network interface
- Supports SNMP v1, v2c, and v3
- Rack-mount chassis, 19 " wide, $13 / 4$ " (1 RU) high
- Dual, redundant power supplies
- Manual or automatic operation
- Monitors unit currents, external alarms, or both
- Automatically switches RF path to standby unit when unit failure occurs
- User-selectable RS-232/-422/-485 serial I/O M\&C interface
- Parallel I/O M\&C interface
- Menu-driven user configuration of all options
- Front panel graphically depicts switch positions and unit status
- Worldwide universal AC input capability standard
- Audible alarm
- CE certified and RoHS compliant; EAR 99
- Monitor and Power Tracking Unit in monopulse systems

Sy stem Specifications (1)

Parameter	Notes	Specification
Frequency Range	$\begin{aligned} & \hline \text { Band "C" } \\ & \text { Band "D" } \end{aligned}$	$\begin{aligned} & 3.6 \text { to } 4.2 \mathrm{GHz} \\ & 3.4 \text { to } 4.2 \mathrm{GHz} \end{aligned}$
Noise Temperature, System	At $+23^{\circ} \mathrm{C}$ Versus Temperature	See Table 1 See Table 2
Gain	Standard LNA	60 dB min., 63 dB typical
Gain Match	Between LNAs	1 dB max.
Gain Flatne ${ }_{\text {ss }}$		$\pm 0.75 \mathrm{~dB}$ over the full band $\pm 0.30 \mathrm{~dB}$ per 40 MHz
Gain Stability	Per day, constant temperature Versus temperature	$\begin{aligned} & \pm 0.2 \mathrm{~dB} \text { max. } \\ & -0.05 \mathrm{~dB} \text { per }{ }^{\circ} \mathrm{C} \text { typical } \end{aligned}$
VSWR	Input, standard Input, with System Option A or B, Tx filter Output	1.20:1 typical, 1.25:1 max. 1.25:1 typical, 1.30:1 max. 1.20:1 typical, 1.25:1 max.
Power Output at 1dB compresign ($\mathrm{P}_{1 \text { dB }}$)	Standard LNA LNA with Option 2 LNA with Option 2 and System Option D, output couplers	+10 dBm min., +13 dBm typical +18 dBm min., +20 dBm typical +17 dBm min., +19 dBm typical
$3^{\text {rd }}$ Order Output Intercept Point (OIP_{3})	Standard LNA LNA with Option 2 LNA with Option 2 and System Option D, output couplers	+20 dBm min., +23 dBm typical +28 dBm min., +30 dBm typical +27 dBm min., +29 dBm typicaL
AM/PM Convergion		$0.05^{\circ} / \mathrm{dB}$ max., at -5 dBm out
Group Delay per 40 MHz	Linear Parabolic Ripple	$0.02 \mathrm{~ns} / \mathrm{MHz}$ $0.002 \mathrm{~ns} / \mathrm{MHz}^{2}$ 0.2 ns peak to peak
Maximum Input Power	Without damage	0 dBm max.
Deģengitization Threghold fo $5.850-6.425 \mathrm{GHz}$ in (Band "C") $5.850-6.725 \mathrm{GHz}$ in (Band "D")	Standard system With System Option A or B, Tx filter	$\begin{aligned} & -10 \mathrm{dBm} \\ & +45 \mathrm{dBm} \end{aligned}$
Connectors $^{\text {s }}$	RF Input RF Output Offline In/Out, Coupler In/Out	CPR229G Waveguide Flange Type N Female Type N Female
Plate $\mathrm{A}_{\text {ss }} \mathrm{mbly}$ Power Requirements ${ }_{\mathbf{s}}$ (for $\mathrm{u}_{\boldsymbol{\rho}}$ with tsandard product LNA ${ }_{5}$	Voltage 1:1 System 1:2 System	11 VDC min., 15 VDC typical, 24 VDC max. 6 W typical 10 W typical
Temperature Range	Switch Plate Assembly	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
(1) System specifications depend on choice of LNA and various options. Specifications shown are for a typical system using LC-4000 series LNAs (Specification 2077)		

Part Number Ordering Information

Examples:

1:1 system with 3.6-4.2 GHz, 40 K LNAs, no LNA options, no system options, and 100 ft . cable:

Order Number L R C 1 C 40 - X X X X X X 1

1:1 system with 3.4-4.2 GHz, 35 K LNAs, no LNA options, Tx Reject filter, CG coupler, and 200 ft . cable:

Order Number L R C1 D $35-\mathrm{XXACXX} 3$

1:2 system with 3.6-4.2 GHz, 45 K LNAs, no LNA options, input CG coupler, output coax coupler, Offline I/O, and 150 ft . cable:

Order Number
LRC2C45-XXXCDE2

1:2 system with $3.4-4.2 \mathrm{GHz}, 30 \mathrm{~K}$ LNAs with high power output option, input and output couplers, and 150 ft . cable:
Order Number
L R C 2 D $30-X 2$ X CD X 2

* Note: Consult factory for custom configurations.

Table 1 - Typical Sys tem Nois e Temperature with Varioıg Options (Add to Tlna)

Table 2 - Noise Temperature vs Ambient Temperature

Noise temperature vs. ambient temperature can be found from
the equation,

$$
N T_{2} / \mathrm{NT}_{1}=\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)^{\mathrm{n}}
$$

where:

```
    \(\mathrm{NT}_{2}=\) Noise Temperature at \(\mathrm{T}_{2}\)
    \(\mathrm{NT}_{1}=\) Noise Temperature at \(\mathrm{T}_{1}\)
    \(\mathrm{T}_{2}=\) Temperature 2 in K
    \(\mathrm{T}_{1}=\) Temperature 1 in K
    \(\mathrm{n}=1.5\) for the LNAs or \(=1.0\) for passive losses
```

$$
\begin{array}{ll}
\text { Example: } & \text { For a } 1: 1 \text { system with Tx filter, crossguide coupler and } 30 \mathrm{~K} L N A s, \mathrm{~T}_{\text {LNA }}=30 \mathrm{~K} \text { at }+23^{\circ} \mathrm{C} \text { and passive } \\
\text { losses }=5 \mathrm{~K} \text { at }+23^{\circ} \mathrm{C} \text {; thus, } \mathrm{T}_{\text {SYs }}=35 \mathrm{~K} \text { at }+23^{\circ} \mathrm{C} \text {. What is } \mathrm{T}_{\text {SYs }} \text { at }+50^{\circ} \mathrm{C} \text { ? } \\
& \text { From the table, } \mathrm{NT}_{2} / \mathrm{NT}_{1} \text { at } 50{ }^{\circ} \mathrm{C}=1.14 \text { for the } \mathrm{LNAs} \text { and } 1.09 \text { for the passive losses: } \\
& \mathrm{NT}_{2}=1.14 \times(30 \mathrm{~K})+1.09 \times(5 \mathrm{~K})=34.2 \mathrm{~K}+5.4 \mathrm{~K}=39.6 \mathrm{~K} \text { at }+50^{\circ} \mathrm{C} .
\end{array}
$$

Redundant Sy stem Controller

1:2 Redundant System Controller, Model RSC12V1-AC The RSC series redundant system controllers for $1: 1$ and $1: 2$ systems directly power the LNAs and monitor the output voltages and currents to detect faults. The RSC can also mointor external alarm signals or a combination of output currents and external alarm inputs. Upon detecting a fault, the RSC transfer switch to activate the spare unit.

Controller Specifications

Unit Status Monitor Methods	Controller monitors unit bias current; alarm is generated if current goes outside of allowed tolerance window (LNA or LNB systems). Controller also monitors external alarm inputs (SSPA and other systems) or combinations of both internal unit current and external alarm inputs.
Unit Current Window Width	$\pm 5 \%$ to $\pm 25 \%$ of nominal; user selectable in 5% steps (applies to all monitored unit currents)
Switchover Time	100 ms maximum
Unit Power Outputs	+14.3 to $+15.0 \mathrm{Vdc}, 700 \mathrm{~mA}$ maximum
Switch Drive Outputs	-22 to -28 Vdc, 2 A maximum
External Alarm Inputs	Optionally up to one per unit; require sinking 5 mA at 5 Vdc to negate alarm
Serial I/O Interface	RS-232/RS-422/RS-485 2- or 4-wire; user selection
Parallel I/O Interface	Control inputs: Contact closures to ground; require sinking 20 mA at 15 Vdc Status outputs: Form ' C ' dry contacts; $100 \mathrm{Vdc}, 0.5 \mathrm{~A}, 3 \mathrm{~W} \max$ (resistive load)
Controller Dimensions	19" (483 mm) W x 1.72" (43.7 mm) H x 17.5" (445 mm) D; 7.6 lb (3.4 kg)
Chassis Slides	Standard. Radio relay rack-mount brackets available on request.
Cable Length to Plate Assy	Order cable separately. $100 \mathrm{ft}(30 \mathrm{~m})$ to $250 \mathrm{ft}(75 \mathrm{~m})$ lengths in $50 \mathrm{ft}(15 \mathrm{~m})$ increments are standard; other lengths (up to 500 ft or 150 m) are available by special order.
AC Input (standard)	100-135 or 180-240 Vac, 47-63 Hz, 100 W ; Dual AC inputs and dual redundant power supplies.
Temperature Range	Operating: 0 to $+50{ }^{\circ} \mathrm{C}$ (indoor equipment environment) Storage: $\quad-40$ to $+70{ }^{\circ} \mathrm{C}$
Reliability	MTBF: 48,200 hours; MTTR: less than 30 minutes with spares and proper technical person.

Controller Front Panel Controls and Indicators

Unit Status Alarms	LED Indicators glow green when OK, red when a fault is detected.
PS Indicator	Glows red to show fault with either dual redundant power supply.
Panel Test	Pushbutton lights all indicators \& tests audible alarm.
RF Switch Pushbuttons and Indicators	Pushbuttons are used to manually switch units. Front panel indicators show which units are on-line. Unit indicators light red to show faulted units. In a typical 1:1 system, Unit 1 is the primary unit and Unit 2 is on standby. In a 1:2 system, Unit 1 is the primary unit for Pol 1 and Unit 2 is the primary unit for Pol 2 . Unit 3 is on standby and can be selected for either Pol. In a dual 1:1 system, Unit 1 is the primary unit and Unit 2 is on standby for Pol 1; Unit 3 is the primary and Unit 4 is on standby for Pol 2.
Auto/Manual Switch and Indicators	In Auto mode, a unit failure initiates automatic switchover to the standby unit. In manual mode, the on-line unit can be selected from the front panel or by serial I/O, parallel I/O or network command.
Remote/Local Switch and Indicators	Selects local (front panel) control, or remote control from serial I/O, parallel I/O, or network. An optional second RSC, configured as a Remote Control Panel, provides the means to operate the system from a physically distant, alternate location.

Controller Rear Panel Interfaces

J1, J2 - LINE 1, LINE 2
(IEC 320-C14)
J3 - PLATE ASSY
(37-pos D, Female)

J6 - SERIAL I/O and
J7 - SERIAL LOOP (9-pos D Female)

J5 - REMOTE LINK (9-pos D Male)

J9 - NETWORK
(RJ-45)
J4 - EXT ALARM (9-pos D Female)

J8 - PARALLEL I/O (37-pos D Male)

Dual power entry modules contain the AC line input connectors. System can be powered from separate AC lines if desired. Either or both power supplies are capable of operating the system.

Cable to plate assembly carries unit power (for line drivers, LNAs or LNBs) and switch drive signals. Order cable separately. Standard lengths are 100' (30 m) to 250 ' (75 m) in 50' (15 m) increments; other lengths are special order. An adapter cable mates the controller to legacy system cables.

RS-232/RS-422/RS-485 connector for user M\&C System. Commands provide monitoring, controlling, and configuration. Interconnect cable lengths to $4000 \mathrm{ft}(1200 \mathrm{~m})$ with RS-422 or RS485. A serial loop connector provides a convenient connection for daisy-chained systems.

For connection via a proprietary RS-422 link (up to $4000 \mathrm{ft} / 1200 \mathrm{~m}$) to an optional, second RSC, which duplicates Local control functions at a secondary site.

10/100 Base T Ethernet connection port via standard RJ-45 connector. Supports SNMP v1, v2c and v3.

External Alarm inputs. Substitute for or combine with internal unit current monitor alarms. Allows an external signal to indicate unit failure. Unused inputs can be used as status inputs to M\&C system.

Parallel I/O (discrete logic) connection for limited control and monitoring of the system.
Form 'C' relay contact outputs (1:2 system example):

- Unit 1 status
- PS 1 status
- Pol 1: Unit 1 or Unit 3
- Unit 2 status
- PS 2 status
- Pol 2: Unit 2 or Unit 3
- Unit 3 status - Local/Remote mode - Auto/Manual mode
Control inputs-contact closure to ground (1:2 system example):
- Pol 1 Unit 1 select • Pol 2 Unit 2 select •Auto/Manual select
- Pol 1 Unit 3 select •Pol 2 Unit 3 select

1:1 Plate Assembly Outline Drawing, with Various Options Installed

1) OUTPUT ISOLATOR INCLUDED WITH STANDARD SYSTEM 2) DIMENSIONS ARE IN INCHES AND [MILLIMETERS]. 3) TRANSMIT REJECT FILTER OPTIONS:

	OPTION A	OPTION B
X	11.00 [279.4]	6.35 [161.3]
Y	26.93 [684.0] MIN.	22.28 [565.9] MIN.
	27.93 [709.4] MAX.	23.28 [591.3] MAX.

VIEW A-A

1:2 Plate Assembly Outline Drawing, with Various Options Installed

Email: contact@orbitalconnect.com
https://store.orbitalconnect.com

